Friday 17 February 2023

Pictures of the Waddington Piano Factory

Just to say many thanks to Chris Rowe, who sent me an e-mail with further information about the Waddington's piano factory - he has managed to unearth some old pictures and postcards.

A picture containing text, painting

Description automatically generated

This is the front of the postcard, showing the Waddington's factory amongst a collage of other buildings which are in the Minster and Duncombe Place areas nearby.

A picture containing text, receipt

Description automatically generated

The back of the postcard lists Waddington's branches at the time.

A black and white photo of a city

Description automatically generated with low confidence

This photo shows the Waddington's piano factory behind the Star Inn in Stonegate - 7 windows side-to-side and a remarkable 6 storeys. I presume this photo was taken some time in the early 20th century.

Thanks once again to Chris Rowe for this fascinating information.

Monday 10 October 2022

"Free piano" (request for up front payment) scam

Just to say that a couple of customers have mentioned that they have seen e-mails or reports of e-mails offering a piano for free, but this is followed up with a request to pay up front for delivery of the piano. In fact, the piano that is offered does not exist, and all contact ceases after payment is made.

To be clear, there are many genuine offers of free pianos through media such as Freecycle; however, it's normal for the person who is taking the piano to arrange transportation. Also, people offering free instruments are usually quite happy for you to view the piano first.

Sunday 10 October 2021

Broadwood Piano Festival, 9th October - report

I attended the Broadwood Piano Festival in the Village Hall at Lythe near Whitby (next to Broadwood's workshops and showroom) on the 9th October, so I thought it might be nice to share a quick report and a few photos. The event was organized over the weekend of 9th and 10th October and there were quite a lot of instruments on display, including a full-size Broadwood barless concert grand piano and several clavichords.

The Broadwood Barless Concert Grand

This is a Broadwood barless concert grand piano from 1900, which was once used for Promenade Season concerts at the Royal Albert Hall in London. It was certainly able to fill the space inside Lythe Village Hall with sound as everyone enjoyed a wonderful performance from concert pianist You-Chiung Lin.

The barless design is unique to Broadwoods, removing the bracing bars that are a feature of normal cast iron grand piano frames. The design was developed by Henry John Tschudi Broadwood in the 1880s and the first examples were produced in 1888. One of the major challenges was that, without the intermediate bars, a cast iron frame is not strong enough to hold the massive compressive force of the strings - around sixteen tons on a typical instrument, and sometimes even more on a large concert grand; thus, in the earlier examples, pressed steel was used instead. After 1895, the material used was cast steel, so the piano has a large and heavy steel frame which flexes significantly when string tension is applied. 

Broadwood barless pianos were made up until around 1927, and no other manufacturer has ever produced a similar design.

The concert also featured a demonstration on a clavichord built recently at the Broadwood workshops. 

Clavichord built at the Broadwood workshops

This clavichord was used as part of the concert, to show how Bach's work might have sounded on an instrument similar to that which might have been used by Bach himself. The clavichord was popular up until the 18th century, and operates by a simple tangent (usually a small piece of metal) hitting the strings. They are capable of great expression, but are only suitable for intimate settings as they are very quiet in comparison to a piano (or the harpsichord, which was also popular around the same period).

In addition, two other clavichords from the Broadwood workshops were on display including this one, pictured above. There was also a display of action models representing action types found on 19th century pianos, and several other pianos, all available for people to try out on the day.

Various piano action models, showing how different types of grand actions worked (as well as a square piano action closest to the camera).

An early 20th century Broadwood upright piano

Many thanks to everyone at Broadwood pianos in Lythe, Whitby, for organizing a thoroughly interesting and enjoyable event.

Saturday 27 June 2020

Operational update

Just to let everyone know that I a currently operating again and taking bookings for new tunings. I am using PPE including a face mask to reduce infection risks, and socially distancing as far as possible.


The current guidance is as follows:

  • You can have a tradesperson working in your home as long as 2-metre social distancing is maintained and no-one has any COVID symptoms.
  • It is recommended that work should not be carried out if someone is self-isolating or where an individual is being shielded.
Obviously it is understood under current circumstances that it may be necessary for you to cancel appointments at short notice.

Sunday 31 May 2020

Octave stretching and tuning a piano

I wanted to post something explaining the phenomenon of "octave stretching" on a piano - that is to say when a piano is tuned, the octaves are slightly further apart than the 2:1 ratio they ought to have according to musical theory. To understand why this is the case, a bit of background knowledge is involved.

"Theoretical" frequencies of notes

The first thing to understand is how the frequency of a note relates to our perception of pitch and musical intervals. The study of this has a long history, going back at least as far as Pythagoras (570-495 BC). He realized that a difference in pitch of one octave was related to doubling or halving the the length of a string under a similar tension (he might have perhaps used a monochord or something similar to work this out). We now understand that this is due to the frequency or number of vibrations per second of the sound (Pythagoras was aware of this, but did not have any means of measuring the number of vibrations directly). Nowadays (not in Pythagoras' time) we normally tune instruments using a system called "equal temperament" - how this came about is a long story in itself, and one which I hope to write about in a future post, but for now I will just describe the method.

So, to explain how the "theoretical" frequencies are calculated. Firstly, the note "A" above middle C is taken as a reference point, and if the piano is tuned to standard pitch, as would be expected for example if tuning for a concert, this would be set to 440Hz or cycles per second. Just to explain what is meant by this, the picture below represents the sound wave:

Obviously this is just a visual representation - what is really happening is a set of alternate compressions and rarefactions in the air, so we could imagine the line when it reaches the top as a compression and at the bottom as a rarefaction. A "cycle" would be the area represented by the red lines below:

So, in other words, there would be 440 successive compressions and rarefactions every second.

Secondly, an octave is standardly taken as a ratio of 2:1 in frequency - so that means that if A above middle C is 440Hz, the A above that ought to be 880Hz, and the one below 220Hz, and so on (this would give us a theoretical frequency for all the 'A's on a piano with a standard compass as follows:

A0 (Bottom A): 27.5 Hz
A1: 55 Hz
A2: 110 Hz
A3: 220 Hz
A4 (A above Middle C): 440 Hz
A5: 880 Hz
A6: 1760 Hz
A7 (Top A): 3520 Hz

Then, having obtained all the 'A's, we want to get the other notes in the scale. As I mentioned above, modern tuning uses a system called "equal temperament", which means that all the notes in the scale are equally spaced from each other, in a logarithmic sense (as I said earlier, I won't go into the historical background of this now). But as there are twelve semitones in a scale, we need to multiply by the twelfth root of two each time:

So in other words if we want to go from an 'A' to a 'B flat' we multiply by this factor and keep doing so again for each successive semitone. This means, for example, that Middle C will have a pitch of 261.6Hz (rounded to one decimal point).

So once we have all the notes in the scale, we can just multiply or divide the frequency by 2 for each octave, and thus we end up with 'theoretically correct' values for every note on the piano. When you use an ordinary chromatic tuner, such as a guitar tuner, these are the frequencies that you will be tuning to (I won't list these exhaustively as it is easily available elsewhere). However, when tuning a real piano, as opposed to a theoretical one, it just doesn't quite work like that.

All about overtones

To understand this a bit better, we need to understand the sounds that are produced when a string, fixed at both ends, is struck by a hammer. A key figure in the science of musical sounds was the German scientists Hermann von Helmholtz (1821-1894), who invented a device called the Helmholtz resonator (amongst numerous other contributions to physics). He was able to explain that when a string vibrates, it does so in a complex manner, so that it vibrates through its entire length, 1/2 its length, 1/3 of its length, and so on as demonstrated by the diagram below:

The string is actually undergoing all these complex vibrations at once (only the first eight are illustrated above); this is one of the factors that gives the acoustic piano a particularly rich tone. Incidentally, the difference between a "bright" and "mellow" sound in a piano's tone is that when the tone is bright, the overtones are relatively more prominent. However, the overtones do become progressively weaker on a real piano as you work your way up the series, and bass notes (long strings) will have much stronger and more prominent overtones than notes in the treble. These overtones are important in various ways in tuning a piano, but for practical purposes nothing above the 8th overtone is really useful.

The string should therefore produce, as well as its fundamental frequency, overtones at double, triple, quadruple its fundamental frequency and so on. However, this is based on the assumption that the string is perfectly flexible, which is not the case; in reality, the string has a certain amount of stiffness. This stiffness has the effect of making the upper overtones relatively sharp of their "correct" frequency, and it turns out that in general, the shorter and thicker the string is, the more pronounced this effect will appear to be. Thus, a string which is tuned to A (440Hz) should in theory have its second partial (overtone) at 880Hz, but we might find in practice, say, that it is 881Hz (as an example). The general name for this effect is Inharmonicity.


How does this affect the tuning of a piano?

It turns out that what the ear perceives to be an "in tune" piano is based on lining up the harmonics of notes in successive octaves so that they coincide with each other, as this produces a "clean" sound. What this means is that when tuning the treble, if you move up an octave, you are generally aiming to tune the fundamental frequency of the note to the second harmonic of the note an octave lower; but because this second harmonic is higher than musical theory would suggest due to the effect of inharmonicity described above, the note an octave higher would correspondingly be sharper. So from the example above, if we set the A above middle C to 440Hz, and the second harmonic of that note is 881Hz in practice, we will be aiming to tune the A an octave above that to 881Hz. The way that this can be done when tuning is by listening for beats, which are interference patterns between strings at slightly different frequencies, and in this case it is the second harmonic of the lower note and the fundamental of the higher one that will generate this. If you can eliminate the beats, the string is in tune.

I should point out that in practice, particularly in the bass, it is a little bit more complicated than this because there are multiple harmonics that may coincide (e.g. 2nd of lower note with 1st of upper note, 4th of lower note with 2nd of upper note and so on), and also double octaves can be check (i.e. 4th of lower note with 1st of upper note). The increased prominence of these overtones in the lower bass means that it isn't always possible to achieve a perfectly "beatless" tuning in the same way.
  
A good tuning may vary according to the piano

If you set out to get the best tuning possible on a very small upright (or baby grand), and did the same with a large concert grand, the two pianos would not necessarily be in tune with each other at the end of the process. Generally speaking, pianos with longer strings in the bass will have less inharmonicity than pianos with shorter bass strings, and therefore the resulting frequencies of the notes will be closer to their "theoretically correct" value, whilst those on the piano with shorter strings will be 'stretched' more. It should be noted that these differences apply particularly to the bass and tenor sections of the instrument where string lengths are limited by the size of the case, whereas strings in the treble are normally fairly similar in length no matter how big the piano.

How does this cause octave stretching?

The effect of inharmonicity is always that the upper harmonics are sharp of their 'theoretical' value, never flat. Thus if notes in the treble are tuned to the upper harmonics of the notes an octave down, or the upper harmonics of notes in the bass are tuned to notes above them, the effect is that the octave is made slightly wider. Additionally, the stretching will normally be greater in the bottom bass and the high treble than in the middle of the keyboard - this is because the strings are very short in the top treble, and thicker in the bass, as the lengthi is limited by the size of the case.

A way of expressing this is the 'Railsback curve', named after O L Railsback. The eponymous inventor, Dr Ora Railsback, taught at Illinois State Teachers' College (now Eastern Illinois University) from 1924 to 1950 and was head of the Physics Department for much of that time; he also completed a doctorate in Physics at the University of Indiana in the 1930s, and during the Second World War enlisted in the US Army. He was a keen musician who founded the college's first marching band, and his PhD research was in the physics of music. As well as his famous 'curve', he was also involved in the development of the Stroboconn, an early type of electro-mechanical musical tuning aid, first marketed in the 1930s (transporting this device required taking around two large cases each weighing around 15 kilos). In 1950, Railsback left to become Head of Physics at the University of Illinois.



On the diagram above, the 88 notes of a standard-compass piano appear on the axis in the middle (I have only highlighted the As and the top C). The blue dots represent a hypothetical "real" piano tuning (by this I mean that I have put in some example data to illustrate), and the red line is the "Railsback curve", which is a best-fit line representing an "ideal" tuning of that particular piano (the values of the curve should be roughly representative of what would be expected in reality).

It should be pointed out that the Railsback curve is not based on any particular mathematical equation, but rather on empirical observation of how the frequencies of notes relate to their theoretically correct values, when a piano is tuned in a way that is pleasing to the ear, and as mentioned above, the curve may differ according to the piano.

I hope the above will give a bit more insight into what "octave stretching" is on a well-tuned piano.

Tuesday 24 March 2020

COVID update

As an update to my last post, I have decided with regret that I am not able to take new bookings until further notice. Although the government's advice has been somewhat confusing at times, it seems clear that the only way to beat the virus is for us all to stay home as much as possible and avoid spreading it. For this reason I think the only responsible course of action is to close temporarily notwithstanding any financial loss.

If you do wish to contact me about any piano-related subject, I am still answering the telephone and e-mails, and I am very happy to arrange an appointment when the current restrictions are lifted. If you already have a booking, I will be in contact with you.

Telephone: 07597 912403
E-mail: andy.chase.ycp@gmail.com

I would like to thank the many valued customers who have used my services in the past and I look forward to seeing you again once we have all made it through the current crisis. Keep safe everyone.

Many thanks,
Andy




Thursday 19 March 2020

Coronavirus (COVID-19) statement

Obviously we have all been much preoccupied of late with the serious situation developing over the pandemic of COVID-19 (coronavirus) and it is absolutely vital that we all do our part to reduce the spread of this dangerous pathogen.

The current position as far as tunings is concerned is as follows:

  • I am willing to carry out tunings, but I am taking additional precautions, such as handwashing on arrival, wiping keyboards after I have finished, &c.
  • If you believe that you are in a "high-risk" group for coronavirus or believe you might pass it on to someone in a high-risk group, I would suggest not calling ar present - it's not worth it.
  • If you have any reason to suspect you or someone in your household has coronavirus, you can ring me at any time to cancel - there is no cancellation charge.
  • Equally I might need to cancel at short notice for the same reason. If government advice is that I should cease activity, I will do so immediately.
I believe many other small traders and businesses are facing similar difficulties in trying to take the correct course of action. I am sure that eventually we will all make it through this period of unprecedented challenges, and I will update on this blog if the position changes at any point.

Kind regards,
Andy